System Macros
Many of the system macros MAY be defined as template macros, and when possible, the specification includes a template. Templates are given here as normative example, but system macros are not required to be implemented as template macros.
The macros that can be defined as templates are included as system macros because of their broad applicability, and
so that Ion implementations can provide optimizations for these macros that run directly in the implementations runtime
environment rather than in the macro evaluator.
For example, a macro such as add_symbols
does not produce user values, so an Ion Reader could bypass
evaluating the template and directly update the encoding context with the new symbols.
Stream Constructors
none
(macro none () (.values))
none
accepts no values and produces nothing (an empty stream).
values
(macro values (v*) v)
This is, essentially, the identity function. It produces a stream from any number of arguments, concatenating the streams produced by the nested expressions. Used to aggregate multiple values or sub-streams to pass to a single argument, or to produce multiple results.
default
(macro default (expr* default_expr*)
// If `expr` is empty...
(.if_none (%expr)
// then expand `default_expr` instead.
(%default_expr)
// If it wasn't empty, then expand `expr`.
(%expr)
)
)
default
tests expr
to determine whether it expands to the empty stream.
If it does not, default
will produce the expansion of expr
.
If it does, default
will produce the expansion of default_expr
instead.
flatten
(macro flatten (sequence*) /* Not representable in TDL */)
The flatten
system macro constructs a stream from the content of one or more sequences.
Produces a stream with the contents of all the sequence
values.
Any annotations on the sequence
values are discarded.
Any non-sequence arguments will raise an error.
Any null arguments will be ignored.
Examples:
(:flatten [a, b, c] (d e f)) => a b c d e f
(:flatten [[], null.list] foo::()) => [] null.list
The flatten
macro can also be used to splice the content of one list or s-expression into another list or s-expression.
[1, 2, (:flatten [a, b]), 3, 4] => [1, 2, a, b, 3, 4]
parse_ion
Ion documents may be embedded in other Ion documents using the parse_ion
macro.
(macro parse_ion (uint8::data*) /* Not representable in TDL */)
The parse_ion
macro constructs a stream of values by parsing a blob literal or string literal as a single, self-contained Ion document.
All values produced by the expansion of parse_ion
are application values.
(I.e. it is as if they are all annotated with $ion_literal
.)
The IVM at the beginning of an Ion data stream is sufficient to identify whether it is text or binary, so text Ion can be embedded as a blob containing the UTF-8 encoded text.
Embedded text example:
(:parse_ion
'''
$ion_1_1
$ion_encoding::((symbol_table ["foo" "bar"]]))
$1 $2
'''
)
=> foo bar
Embedded binary example:
(:parse_ion {{ 4AEB6qNmb2+jYmFy }} )
=> foo bar
important
Unlike most macros, this macro specifically requires literals. Macros are not allowed to contain recursive calls, and composing an embedded document from multiple expressions would make it possible to implement recursion in the macro system.
The data argument is evaluated in a clean environment that cannot read anything from the parent document. Allowing context to leak from the outer scope into the document being parsed would also enable recursion.
Value Constructors
annotate
(macro annotate (ann* value) /* Not representable in TDL */)
Produces the value
prefixed with the annotations ann
s1.
Each ann
must be a non-null, unannotated string or symbol.
(:annotate (: "a2") a1::true) => a2::a1::true
make_string
(macro make_string (content*) /* Not representable in TDL */)
Produces a non-null, unannotated string containing the concatenated content produced by the arguments. Nulls (of any type) are forbidden. Any annotations on the arguments are discarded.
make_symbol
(macro make_symbol (content*) /* Not representable in TDL */)
Like make_string
but produces a symbol.
make_blob
(macro make_blob (lobs*) /* Not representable in TDL */)
Like make_string
but accepts lobs and produces a blob.
make_list
(macro make_list (sequences*) [ (.flatten sequences) ])
Produces a non-null, unannotated list by concatenating the content of any number of non-null list or sexp inputs.
(:make_list) => []
(:make_list (1 2)) => [1, 2]
(:make_list (1 2) [3, 4]) => [1, 2, 3, 4]
(:make_list ((1 2)) [[3, 4]]) => [(1 2), [3, 4]]
make_sexp
(macro make_sexp (sequences*) ( (.flatten sequences) ))
Like make_list
but produces a sexp.
(:make_sexp) => ()
(:make_sexp (1 2)) => (1 2)
(:make_sexp (1 2) [3, 4]) => (1 2 3 4)
(:make_sexp ((1 2)) [[3, 4]]) => ((1 2) [3, 4])
make_struct
(macro make_struct (structs*) /* Not representable in TDL */)
Produces a non-null, unannotated struct by combining the fields of any number of non-null structs.
(:make_struct) => {}
(:make_struct
{k1: 1, k2: 2}
{k3: 3}
{k4: 4}) => {k1:1, k2:2, k3:3, k4:4}
make_field
(macro make_field (flex_sym::field_name value) /* Not representable in TDL */)
Produces a non-null, unannotated, single-field struct using the given field name and value.
This can be used to dynamically construct field names based on macro parameters.
Example:
(macro foo_struct (extra_name extra_value)
(make_struct
{
foo_a: 1,
foo_b: 2,
}
(make_field (make_string "foo_" (%extra_name)) (%extra_value))
))
Then:
(:foo_struct c 3) => { foo_a: 1, foo_b: 2, foo_c: 3 }
make_decimal
(macro make_decimal (flex_int::coefficient flex_int::exponent) /* Not representable in TDL */)
This is no more compact than the regular binary encoding for decimals. However, it can be used in conjunction with other macros, for example, to represent fixed-point numbers.
(macro usd (cents) (.annotate USD (.make_decimal cents -2))
(:usd 199) => USD::1.99
make_timestamp
(macro make_timestamp (uint16::year
uint8::month?
uint8::day?
uint8::hour?
uint8::minute?
/*decimal*/ second?
int16::offset_minutes?) /* Not representable in TDL */)
Produces a non-null, unannotated timestamp at various levels of precision.
When offset
is absent, the result has unknown local offset; offset 0
denotes UTC.
The arguments to this macro may not be any null value.
note
TODO ion-docs#256 Reconsider offset semantics, perhaps default should be UTC.
Example:
(macro ts_today
(uint8::hour uint8::minute uint32::seconds_millis)
(.make_timestamp
2022
4
28
hour
minute
(.make_decimal (%seconds_millis) -3) 0))
Encoding Utility Macros
repeat
The repeat
system macro can be used for efficient run-length encoding.
(macro repeat (n! value+) /* Not representable in TDL */)
Produces a stream that repeats the specified value
expression(s) n
times.
(:repeat 5 0) => 0 0 0 0 0
(:repeat 2 true false) => true false true false
delta
note
🚧 Name still TBD 🚧
The delta
system macro can be used for directed delta encoding.
(macro delta (flex_int::initial! flex_int::deltas+) /* Not representable in TDL */)
Example:
(:delta 10 1 2 3 -4) => 11 13 16 12
sum
(macro sum (i*) /* Not representable in TDL */)
Produces the sum of all the integer arguments.
Examples:
(:sum 1 2 3) => 6
(:sum (:)) => 0
meta
(macro meta (anything*) (.none))
The meta
macro accepts any values and emits nothing.
It allows writers to encode data that will be not be surfaced to most readers.
Readers can be configured to intercept calls to meta
, allowing them to read the otherwise invisible data.
When transcribing from one format to another, writers should preserve invocations of meta
when possible.
Example:
(:values
(:meta {author: "Mike Smith", email: "mikesmith@example.com"})
{foo:2,foo:1}
)
=>
{foo:2,foo:1}
Updating the Encoding Context
set_symbols
Sets the local symbol table, preserving any macros in the macro table.
(macro set_symbols (symbols*)
$ion_encoding::(
(symbol_table [(%symbols)])
(macro_table $ion_encoding)
))
Example:
(:set_symbols foo bar)
=>
$ion_encoding::(
(symbol_table [foo, bar])
(macro_table $ion_encoding)
)
add_symbols
Appends symbols to the local symbol table, preserving any macros in the macro table.
(macro add_symbols (symbols*)
$ion_encoding::(
(symbol_table $ion_encoding [(%symbols)])
(macro_table $ion_encoding)
))
Example:
(:add_symbols foo bar)
=>
$ion_encoding::(
(symbol_table $ion_encoding [foo, bar])
(macro_table $ion_encoding)
)
set_macros
Sets the local macro table, preserving any symbols in the symbol table.
(macro set_macros (macros*)
$ion_encoding::(
(symbol_table $ion_encoding)
(macro_table (%macros))
))
Example:
(:set_macros (macro pi () 3.14159))
=>
$ion_encoding::(
(symbol_table $ion_encoding)
(macro_table (macro pi () 3.14159))
)
add_macros
Appends macros to the local macro table, preserving any symbols in the symbol table.
(macro add_macros (macros*)
$ion_encoding::(
(symbol_table $ion_encoding)
(macro_table $ion_encoding (%macros))
))
Example:
(:add_macros (macro pi () 3.14159))
=>
$ion_encoding::(
(symbol_table $ion_encoding)
(macro_table $ion_encoding (macro pi () 3.14159))
)
use
Appends the content of the given module to the encoding context.
(macro use (catalog_key version?)
$ion_encoding::(
(import the_module catalog_key (.default (%version) 1))
(symbol_table $ion_encoding the_module)
(macro_table $ion_encoding the_module)
))
Example:
(:use "org.example.FooModule" 2)
=>
$ion_encoding::(
(import the_module "org.example.FooModule" 2)
(symbol_table $ion_encoding the_module)
(macro_table $ion_encoding the_module)
)
The annotations sequence comes first in the macro signature because it parallels how annotations are read from the data stream.^