System Macros

Many of the system macros MAY be defined as template macros, and when possible, the specification includes a template. Templates are given here as normative example, but system macros are not required to be implemented as template macros.

The macros that can be defined as templates are included as system macros because of their broad applicability, and so that Ion implementations can provide optimizations for these macros that run directly in the implementations runtime environment rather than in the macro evaluator. For example, a macro such as add_symbols does not produce user values, so an Ion Reader could bypass evaluating the template and directly update the encoding context with the new symbols.

Stream Constructors

none

(macro none () (.values))

none accepts no values and produces nothing (an empty stream).

For normative examples, see none in the Ion conformance test suite.

values

(macro values (v*) v)

This is, essentially, the identity function. It produces a stream from any number of arguments, concatenating the streams produced by the nested expressions. Used to aggregate multiple values or sub-streams to pass to a single argument, or to produce multiple results.

For normative examples, see values in the Ion conformance test suite.

default

(macro default (expr* default_expr*)
    // If `expr` is empty...
    (.if_none (%expr)
        // then expand `default_expr` instead.
        (%default_expr)
        // If it wasn't empty, then expand `expr`.
        (%expr)
    )
)

default tests expr to determine whether it expands to the empty stream. If it does not, default will produce the expansion of expr. If it does, default will produce the expansion of default_expr instead.

For normative examples, see values in the Ion conformance test suite.

flatten

(macro flatten (sequence*) /* Not representable in TDL */)

The flatten system macro constructs a stream from the content of one or more sequences.

Produces a stream with the contents of all the sequence values. Any annotations on the sequence values are discarded. Any non-sequence arguments will raise an error. Any null arguments will be ignored.

Examples:

(:flatten [a, b, c] (d e f))       => a b c d e f
(:flatten [[], null.list] foo::()) => [] null.list

The flatten macro can also be used to splice the content of one list or s-expression into another list or s-expression.

[1, 2, (:flatten [a, b]), 3, 4] => [1, 2, a, b, 3, 4]

For normative examples, see flatten in the Ion conformance test suite.

parse_ion

Ion documents may be embedded in other Ion documents using the parse_ion macro.

(macro parse_ion (uint8::data*) /* Not representable in TDL */)

The parse_ion macro constructs a stream of values by parsing a blob literal or string literal as a single, self-contained Ion document. All values produced by the expansion of parse_ion are application values. (i.e. it is as if they are all annotated with $ion_literal.)

The IVM at the beginning of an Ion data stream is sufficient to identify whether it is text or binary, so text Ion can be embedded as a blob containing the UTF-8 encoded text.

Embedded text example:

(:parse_ion
    '''
    $ion_1_1
    $ion::(module _ (symbol_table ["foo" "bar"]]))
    $1 $2
    '''
)
=> foo bar

Embedded binary example:

(:parse_ion {{ 4AEB6qNmb2+jYmFy }} )
=> foo bar

important

Unlike most macros, this macro specifically requires literals. Macros are not allowed to contain recursive calls, and composing an embedded document from multiple expressions would make it possible to implement recursion in the macro system.

The data argument is evaluated in a clean environment that cannot read anything from the parent document. Allowing context to leak from the outer scope into the document being parsed would also enable recursion.

For normative examples, see parse_ion in the Ion conformance test suite.

Value Constructors

annotate

(macro annotate (ann* value) /* Not representable in TDL */)

Produces the value prefixed with the annotations anns1. Each ann must be a non-null, unannotated string or symbol.

(:annotate (: "a2") a1::true) => a2::a1::true

For normative examples, see annotate in the Ion conformance test suite.

make_string

(macro make_string (content*) /* Not representable in TDL */)

Produces a non-null, unannotated string containing the concatenated content produced by the arguments. Nulls (of any type) are forbidden. Any annotations on the arguments are discarded.

For normative examples, see make_string in the Ion conformance test suite.

make_symbol

(macro make_symbol (content*) /* Not representable in TDL */)

Like make_string but produces a symbol.

For normative examples, see make_symbol in the Ion conformance test suite.

make_blob

(macro make_blob (lobs*) /* Not representable in TDL */)

Like make_string but accepts lobs and produces a blob.

For normative examples, see make_blob in the Ion conformance test suite.

make_list

(macro make_list (sequences*) [ (.flatten sequences) ])

Produces a non-null, unannotated list by concatenating the content of any number of non-null list or sexp inputs.

(:make_list)                  => []
(:make_list (1 2))            => [1, 2]
(:make_list (1 2) [3, 4])     => [1, 2, 3, 4]
(:make_list ((1 2)) [[3, 4]]) => [(1 2), [3, 4]]

For normative examples, see make_list in the Ion conformance test suite.

make_sexp

(macro make_sexp (sequences*) ( (.flatten sequences) ))

Like make_list but produces a sexp.

(:make_sexp)                  => ()
(:make_sexp (1 2))            => (1 2)
(:make_sexp (1 2) [3, 4])     => (1 2 3 4)
(:make_sexp ((1 2)) [[3, 4]]) => ((1 2) [3, 4])

For normative examples, see make_sexp in the Ion conformance test suite.

make_struct

(macro make_struct (structs*) /* Not representable in TDL */)

Produces a non-null, unannotated struct by combining the fields of any number of non-null structs.

(:make_struct)    => {}
(:make_struct
  {k1: 1, k2: 2}
  {k3: 3}
  {k4: 4})        => {k1:1, k2:2, k3:3, k4:4}

For normative examples, see make_struct in the Ion conformance test suite.

make_field

(macro make_field (field_name value) /* Not representable in TDL */)

Produces a non-null, unannotated, single-field struct using the given field name and value.

The field_name parameter may be (or evaluate to) any non-null text value, and the value parameter may be (or evaluate to) any single value.

This can be used to dynamically construct field names based on macro parameters.

Example:

(macro foo_struct (extra_name extra_value)
       (make_struct 
         {
           foo_a: 1,
           foo_b: 2,
         }
         (make_field (make_string "foo_" (%extra_name)) (%extra_value))
       ))

Then:

(:foo_struct c 3) => { foo_a: 1, foo_b: 2, foo_c: 3 }

For normative examples, see make_struct in the Ion conformance test suite.

make_decimal

(macro make_decimal (coefficient exponent) /* Not representable in TDL */)

This is no more compact than the regular binary encoding for decimals. However, it can be used in conjunction with other macros, for example, to represent fixed-point numbers.

Both coefficient and exponent must be (or evaluate to) a single integer value.

(macro usd (cents) (.annotate USD (.make_decimal cents -2))

(:usd 199) =>  USD::1.99

note

It is not possible to use make_decimal to construct any negative zero value because Ion integers do not have signed zero.

For normative examples, see make_decimal in the Ion conformance test suite.

make_timestamp

(macro make_timestamp (year month? day? hour? minute? second? offset_minutes?) /* Not representable in TDL */)

Produces a non-null, unannotated timestamp at various levels of precision. When offset is absent, the result has unknown local offset; offset 0 denotes UTC.

The make_timestamp macro has rules that cannot be expressed in the macro signature because it must construct a valid Ion timestamp value.

The arguments to this macro may not be any null value. The evaluated argument for the year parameter must be an integer from 1 to 9999 inclusive. The evaluated argument for the month parameter, if present, must be an integer from 1 to 12 inclusive. The evaluated argument for the day parameter, if present, must be an integer that is a valid, 1-indexed day for the given month. The evaluated argument for the hour parameter, if present, must be an integer from 0 to 23 inclusive. The evaluated argument for the day parameter, if present, must be an integer from 0 to 59 inclusive. The evaluated argument for the second parameter, if present, must be a decimal or integer value that is greater than or equal to zero and less than 60. The evaluated arguments for all other parameters, if present, must be integer values.

The offset_minutes and hour parameters may only be present if minute is present. Aside from offset_minutes, if any evaluated argument is present, the evaluated arguments for all parameters to the left must also be present. The precision of the constructed timestamp is determined by which parameters have non-empty arguments.

note

TODO ion-docs#256 Reconsider offset semantics, perhaps default should be UTC.

Example:

(macro ts_today 
       (uint8::hour uint8::minute uint32::seconds_millis)
       (.make_timestamp
         2022
         4
         28
         hour
         minute
         (.make_decimal (%seconds_millis) -3) 0))

For normative examples, see make_timestamp in the Ion conformance test suite.

Encoding Utility Macros

repeat

The repeat system macro can be used for efficient run-length encoding.

(macro repeat (n! value*) /* Not representable in TDL */)

Produces a stream that repeats the specified value expression(s) n times.

The evaluated argument for n must be a non-null integer value that is equal to or greater than zero.

(:repeat 5 0)          => 0 0 0 0 0
(:repeat 2 true false) => true false true false

For normative examples, see repeat in the Ion conformance test suite.

delta

(macro delta (deltas*) /* Not representable in TDL */)

The delta system macro can be used for directed delta encoding. It produces a stream that is equal in length to the deltas argument, defined by the recurrence relation:

output₀ = delta₀
outputₙ₊₁ = outputₙ + deltaₙ₊₁

Example:

(:delta 1000 1 2 3 -4) => 1000 1001 1003 1006 1002

For normative examples, see delta in the Ion conformance test suite.

sum

(macro sum (a b) /* Not representable in TDL */)

Produces the sum of two non-null integer arguments.

Examples:

(:sum 1 2) => 3

For normative examples, see sum in the Ion conformance test suite.

meta

(macro meta (anything*) (.none))

The meta macro accepts any values and emits nothing. It allows writers to encode data that will be not be surfaced to most readers. Readers can be configured to intercept calls to meta, allowing them to read the otherwise invisible data.

When transcribing from one format to another, writers should preserve invocations of meta when possible.

Example:

(:values
    (:meta {author: "Mike Smith", email: "mikesmith@example.com"})
    {foo:2,foo:1}
)
=>
{foo:2,foo:1}

For normative examples, see meta in the Ion conformance test suite.

Updating the Encoding Context

set_symbols

Redefines the default module's symbol table, preserving any macros in its macro table.

(macro set_symbols (symbols*)
       $ion::
       (module _
         (symbol_table [(%symbols)])
         (macro_table _)
       ))

Example:

(:set_symbols foo bar)
=>
$ion::
(module _
  (symbol_table [foo, bar])
  (macro_table _)
)

For normative examples, see set_symbols in the Ion conformance test suite.

add_symbols

Appends symbols to the default module's symbol table, preserving any macros in its macro table.

(macro add_symbols (symbols*)
       $ion::
       (module _
         (symbol_table _ [(%symbols)])
         (macro_table _)
       ))

Example:

(:add_symbols foo bar)
=>
$ion::
(module _
  (symbol_table _ [foo, bar])
  (macro_table _)
)

For normative examples, see add_symbols in the Ion conformance test suite.

set_macros

Sets the default module's macro table, preserving any symbols in its symbol table.

(macro set_macros (macros*)
       $ion::
       (module _
         (symbol_table _)
         (macro_table (%macros))
       ))

Example:

(:set_macros (macro pi () 3.14159))
=>
$ion::
(module _
  (symbol_table _)
  (macro_table (macro pi () 3.14159))
)

For normative examples, see set_macros in the Ion conformance test suite.

add_macros

Appends macros to the default module's macro table, preserving any symbols in its symbol table.

(macro add_macros (macros*)
       $ion::
       (module _
         (symbol_table _)
         (macro_table _ (%macros))
       ))

Example:

(:add_macros (macro pi () 3.14159))
=>
$ion::
(module _
  (symbol_table _)
  (macro_table _ (macro pi () 3.14159))
)

For normative examples, see add_macros in the Ion conformance test suite.

use

Appends the content of the given module to the default module.

(macro use (catalog_key version?)
       $ion::
       (module _
         (import the_module catalog_key (.default (%version) 1))
         (symbol_table _ the_module)
         (macro_table _ the_module)
       ))

Example:

(:use "org.example.FooModule" 2)
=>
$ion::
(module _
  (import the_module "org.example.FooModule" 2)
  (symbol_table _ the_module)
  (macro_table _ the_module)
)

For normative examples, see use in the Ion conformance test suite.


1

The annotations sequence comes first in the macro signature because it parallels how annotations are read from the data stream.^